Coaching for Content:
The Top 3 Elementary Math Topics That Must Be Taught Differently

Kristin Gray Marni Greenstein Shelbi Cole Dionne Samb

@IllustrateMath Illustrative Mathematics #LearnWithIM
"Knowing mathematics for teaching demands a kind of depth and detail that goes well beyond what is needed to carry out the algorithm reliably."

~ Deborah Ball
Three Guesses

What 3 math topics must be taught differently in K-5?
Topic 1:

Addition Fluency within 20
Topic 1: Addition Fluency Within 20

- Why this topic?
- What are the expectations for fluency?
- What have we been doing?
- What can we do we get kids there?
Build procedural fluency from conceptual understanding

Effective teaching of mathematics builds fluency with procedures on a foundation of conceptual understanding so that students, over time, become skillful in using procedures flexibly as they solve contextual and mathematical problems.
A Careful Progression to Fluency

<table>
<thead>
<tr>
<th>Grade</th>
<th>Within 5</th>
<th>Within 10</th>
<th>Within 20</th>
<th>Within 100</th>
<th>Within 1,000</th>
<th>Within 1,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What Do The Standards Say?

1.OA.C Add and subtract within 20.
6. Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., $8 + 6 = 8 + 2 + 4 = 10 + 4 = 14$); decomposing a number leading to a ten (e.g., $13 - 4 = 13 - 3 - 1 = 10 - 1 = 9$); using the relationship between addition and subtraction (e.g., knowing that $8 + 4 = 12$, one knows $12 - 8 = 4$); and creating equivalent but easier or known sums (e.g., adding $6 + 7$ by creating the known equivalent $6 + 6 + 1 = 12 + 1 = 13$).

2.OA.B Add and subtract within 20.
2. Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers.
Grade 1 or 2?

How can thinking about 10 help you find $9 + 3$?
Use the ten-frames and counters to show how.

See margin for sample student work.

9
$+3$

How can thinking about 10 help you find the answer to the addition fact $9 + 5$?
Show your work and explain.
Addition Facts Within 20
Addition Worksheets

1, 3, or 5 Minute Drills for Addition Worksheets

An addition drill is a worksheet with all of the single digit problems for one operation on one page. A student who has memorized all of the single digit addition problems should be able to work out the 100 problems correctly in 5 minutes, 60 problems in 3 minutes, or 20 problems in 1 minute.

Choose the numbers for the top addend

0 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
All Clear

Choose the numbers for the bottom addend

0 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
All Clear

Type of Addition Drill

- 20 Problems for a 1 Minute Drill
- 60 Problems for a 3 Minutes Drill
- 100 Problems for a 5 Minute Drill
If you know the sum, just write it down. If not, then find the sum by making ten.

```
5 + 9 = 14
6 + 8 = 14
7 + 4 = 11
8 + 4 = 12
7 + 6 = 13
9 + 4 = 13
3 + 7 = 10
9 + 8 = 17
4 + 3 = 7
8 + 7 = 15
6 + 9 = 15
2 + 9 = 11
5 + 7 = 12
9 + 9 = 18
6 + 7 = 13
```

Zimba, “How I see Addition Facts” *Colorado Mathematics Teacher*, Fall 2016
Grade 1: Addition within 20

Count On to Add
1.OA.C.5, MP.2, MP.4

Count On to Add Using an Open Number Line
1.OA.C.5, MP.3, MP.4, MP.5

Doubles
1.OA.C.5, 1.OA.C.6, MP.1, MP.3, MP.4, MP.8

Doubles Plus 1
1.OA.C.5, 1.OA.C.6, MP.1, MP.2, MP.6

Doubles Plus 2
1.OA.C.5, 1.OA.C.6, MP.2, MP.3, MP.4, MP.6

Make 10 to Add
1.OA.C.6, MP.3, MP.4, MP.8

Continue to Make 10 to Add
1.OA.C.6, MP.3, MP.5, MP.7

Augend
/ˈoʊ.ʃənd/

noun Mathematics • Computing

the number to which an addend is added.
"we can begin with the combination in which both the addend and the augend are 0's but the carry bit from the previous column is a 1"
A Focused Approach

Draft of IM Elementary Curriculum

Grade 1 Unit 3

- Section 1: 10 as a Unit
- Section 2: Composing 10 to Add and Subtract
- Section 3: Using Facts I Know to Add and Subtract
- Section 4: Applying Our Strategies to Word Problems
Topic 2:

Fractions as an Extension of work with Whole Numbers
Topic 2: Fractions as an Extension of Work with Whole Numbers

- Why are fractions on the list?
- How does the language of college- and career-ready standards shift how we teach fractions?
- Examples
Why Fractions?

“The coherence and sequential nature of mathematics dictate the foundational skills that are necessary for the learning of algebra. The most important foundational skill not presently developed appears to be proficiency with fractions. The teaching of fractions must be acknowledged as critically important and improved before an increase in student achievement in algebra can be expected.”

What has changed?

“Children must adopt new rules for fractions that often conflict with well-established ideas about whole number”
Bezuk & Cramer, 1989
What has changed?

3.NF.A Develop understanding of fractions as numbers.

4.NF.B Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.

5.NF.B Apply and extend previous understandings of multiplication and division to multiply and divide fractions.
What do you notice?
What do you wonder?

Grade 3 Mathematics Module 5

Grade 3 Mathematics Module 5: Fractions as Numbers on the Number Line

In this 35-day Grade 3 module, students extend and deepen second grade practice with “equal shares” to understanding fractions as equal partitions of a whole. Their knowledge becomes more formal as they work with area models and the number line.

Eureka Math G3 Fraction Module

Random G3 District Fraction Pacing Guide

Domain 3: Number and Operations - Fractions
Chapter 10: Fractions (12-13 days)

NJ 2016 Student Learning Standards: Mathematics Grade 3

3.NF.1 - Understand a fraction $\frac{1}{b}$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a/b as the quantity formed by a parts of size $1/b$.

3.NF.2 - Understand a fraction as a number on the number line; represent fractions on a number line diagram.

3.NF.2a - Represent a fraction $\frac{a}{b}$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $\frac{1}{b}$ and that the endpoint of the part based at 0 locates the number $\frac{a}{b}$ on the number line.

3.NF.2b - Represent a fraction $\frac{a}{b}$ on a number line diagram by marking off a lengths $\frac{1}{b}$ from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line.

3.NF.3 - Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.

3.NF.3a - Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.

3.NF.3b - Recognize and generate simple equivalent fractions, e.g., $\frac{1}{2} = \frac{2}{4}, \frac{4}{6} = \frac{2}{3}$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.

3.NF.3c - Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers.

3.NF.3d - Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols $<, =, >$, and justify the conclusions, e.g., by using a visual fraction model.

3.G.2 - Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole.
How do the shifts play out with respect to fraction instruction?

- Focus – spend more time
- Coherence – pay attention to the meaning of the cluster and the importance of the unit fraction
- Rigor – follow the progression here – the Grade 3 work in fractions should be almost entirely CONCEPTUAL
3.NF Unpacked

Develop understanding of fractions as numbers.

1. Understand a fraction $1/b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size $1/b$.

2. Understand a fraction as a number on the number line; represent fractions on a number line diagram.
 a. Represent a fraction $1/b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1/b$ and that the endpoint of the part based at 0 locates the number $1/b$ on the number line.
 b. Represent a fraction a/b on a number line diagram by marking off a lengths $1/b$ from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line.

3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.
 a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.
 b. Recognize and generate simple equivalent fractions, e.g., $1/2 = 2/4$, $4/6 = 2/3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.
 c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3 = 3/1$; recognize that $6/1 = 6$; locate $4/4$ and 1 at the same point of a number line diagram.
 d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols $>$, $=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.

Verbs: understand (x4); represent (x3); recognize (x5); explain (x2); compare (x2); express; record; justify; generate

Number of standards calling for real world (application) problems: zero
What does it mean to extend the work of whole numbers to fractions?

1.OA.D.7 Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false.
1.OA.B.3 Apply properties of operations as strategies to add and subtract.
What mathematics is being developed?

What mathematical transition do you see happening?

What mathematics might students have been working on before to get here?

What might be still ahead in the grade 3 work?
What new mathematical ideas are students working with here?

Are they really “new”?

What is interesting about the student’s approach to problem #2 here? What questions do we have for the student about his/her work?

For problem 2, how might students’ work look different if the last sentence/direction was not there?
Revisiting the Shift of Coherence

4.NF.B.3 Understand a fraction \(\frac{a}{b} \) with \(a>1 \) as a sum of fractions \(\frac{1}{b} \).

4.NF.B.4a Understand a fraction \(\frac{a}{b} \) as a multiple of \(\frac{1}{b} \).

4.NF.B.4b Understand a multiple of \(\frac{a}{b} \) as a multiple of \(\frac{1}{b} \) and use this understanding to multiply a fraction by a whole number.

5.NF.B.7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
Assessment of Fractions

Drag juice bottles into each bag to create a bag within the range of weights shown. If you cannot create a bag within the range of weights shown, leave the bag empty.

Drag and drop the expressions into the correct order.

- $19 \times \frac{3}{3}$
- $19 \times \frac{1}{2}$
- $19 \times \frac{3}{2}$
- $19 \times \frac{2}{3}$
Topic 3:

Multiplication
Topic 3: Multiplication Expressions

- Why is multiplication on the list?
- How does the language of the CCSS influence the way we teach multiplication?
- Grade 3 and Grade 4
 - What has been done?
 - What can we do differently (and better)?
Topic 3: Multiplication

What is 3 x 4?

How might students answer this?
CCSS.MATH.CONTENT.3.OA.A.1
Interpret products of whole numbers, e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5 × 7.

CCSS.MATH.CONTENT.3.OA.C.7
Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that 8 × 5 = 40, one knows 40 ÷ 5 = 8) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.
What has been done?

Chapter 3 Understand Multiplication

3.1 Count Equal Groups
3.2 Algebra: Relate Addition and Multiplication
3.3 Skip Count on a Number Line
Mid-Chapter Checkpoint
3.4 Problem Solving: Model Multiplication
3.5 Model with Arrays
3.6 Algebra: Commutative Property of Multiplication
3.7 Algebra: Multiply with 1 and 0
Chapter 3 Review/Test
Performance Task
What can we do differently?

Cool-down: Equal Groups Drawings

Jada had 3 bags. Each bag has 5 bracelets in it.

Draw a picture to represent the situation.

Cool-down: Create a Tape and Expression

There were 6 envelopes. Each envelope had 2 notes in it.

1. Draw a tape diagram to represent the situation.
2. Write a multiplication expression to represent the situation.

Cool-down: Ducks in a Pond

There are 4 ponds. Each pond has 5 ducks. How many ducks are there altogether? Show or explain your reasoning.

Cool-down: Create a Drawing

The store has 4 boxes. Each box has 10 shirts in it.

1. Draw a tape diagram to represent the situation.
What is $3 \times \frac{3}{4}$?

How might students answer this?
CCSS.Math.Content.4.NF.B.4.B
Understand a multiple of a/b as a multiple of 1/b, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express 3 \(\times \frac{2}{5} \) as 6 \(\times \frac{1}{5} \), recognizing this product as 6/5. (In general, \(n \times \frac{a}{b} = \frac{(n \times a)}{b} \).)

CCSS.Math.Content.4.NF.B.4.C
Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat \(\frac{3}{8} \) of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?
What has been done?

Chapter 7 Add and Subtract Fractions
- 7.1 Investigate: Join and Separate Fractions
- 7.2 Write Fractions as Sums
- 7.3 Add Fractions Using Models
- 7.4 Subtract Fractions Using Models
- 7.5 Add and Subtract Fractions

Mid-Chapter Checkpoint
- 7.6 Rename Fractions and Mixed Numbers
- 7.7 Add and Subtract Mixed Numbers
- 7.8 Record Subtraction with Renaming
- 7.9 Algebra: Fractions and Properties of Addition
- 7.10 Problem Solving: Multistep Problems with Fractions

Chapter 7 Review/Test
Performance Task

Chapter 8 Multiply Fractions by Whole Numbers
- 8.1 Investigate: Multiples of Unit Fractions
- 8.2 Investigate: Multiples of Fractions

Mid-Chapter Checkpoint
- 8.3 Model Multiplication of a Fraction by a Whole Number
- 8.4 Multiply a Fraction by a Whole Number
- 8.5 Problem Solving: Comparison Problems with Multiplication

Chapter 8 Review/Test
Performance Task

Lessons 1–2:
Decompose fractions as a sum of unit fractions using tape diagrams.

Lesson 3:
Decompose non-unit fractions and represent them as a whole number times a unit fraction using tape diagrams.

Lesson 4:
Decompose fractions into sums of smaller unit fractions using tape diagrams.

Lesson 5:
Decompose unit fractions using area models to show equivalence.

Lesson 6:
Decompose fractions using area models to show equivalence.
What can we do differently?

Draft of IM Elementary Curriculum

Grade 4 Unit 2 Section A

4.2.A.1 Represent Equal Groups
4.2.A.2 Represent Equal Groups of Unit Fractions
4.2.A.3 Represent Equal Groups of Fractions with Expressions
4.2.A.4 Find Patterns in Fraction Multiplication
4.2.A.5 Solve Problems involving Equal Groups of Fractions
True or False?

\[4 \times \frac{79}{90} = 5 \times \frac{79}{90} \]

\[3 \times \frac{89}{90} = 3 \times \frac{89}{91} \]

\[3 \times (2 \times \frac{54}{90}) = 6 \times \frac{54}{90} \]
Coaching For Content

- Choose and area of focus (What is your topic? What do the Standards and Progressions say across grades?)
- Reflect on current practice (What do we currently do? How could we do it better?)
- Choose a task around this topic (What tasks on the Coherence Map support this topic?)
- Do Math Together (What are students building on? addressing? building toward?)
- Try the task in a classroom (What did students say and do?)
- Meet to discuss (What did we learn about student thinking in relations to this topic? How will this impact my instruction?)
THANK YOU

Kristin @MathMinds
kgray@illustrativemathematics.org

Marni @Math_Marni
mgreenstein@illustrativemathematics.org

Shelbi @ShelbiCole1
scole@studentsachieve.net

Dionne @Dionnedance
dsamb@illustrativemathematics.org
We strive to continually improve our educational programming. Please take a moment to evaluate this session by following the instructions below:

In the NCSM Conference App, click the “Schedule” icon and select this session (search function is available)

On the session page, scroll down to the “Surveys” section and click on “Session Survey” to begin

Thank you for sharing your feedback with us!