Join our community!

NF. Number and Operations---Fractions

    4.NF. Grade 4 - Number and Operations---Fractions

      4.NF.B. Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.

        4.NF.B.3. Understand a fraction $a/b$ with $a > 1$ as a sum of fractions $1/b$.

          4.NF.B.3.b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $\frac38 = \frac18 + \frac18 + \frac18$; $\frac38 = \frac18 + \frac28$; $2 \frac18 = 1 + 1 + \frac18 = \frac88 + \frac88 + \frac18.$

          4.NF.B.3.d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

          • No tasks yet illustrate this standard.

        4.NF.B.4. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.

          4.NF.B.4.a. Understand a fraction $a/b$ as a multiple of $1/b$. For example, use a visual fraction model to represent $5/4$ as the product $5 \times (1/4)$, recording the conclusion by the equation $5/4 = 5 \times (1/4).$

          • No tasks yet illustrate this standard.

          4.NF.B.4.b. Understand a multiple of $a/b$ as a multiple of $1/b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times (2/5)$ as $6 \times (1/5)$, recognizing this product as $6/5$. (In general, $n \times (a/b) = (n \times a)/b.$)

          • No tasks yet illustrate this standard.

          4.NF.B.4.c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat 3/8 of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?

      4.NF.C. Understand decimal notation for fractions, and compare decimal fractions.

        4.NF.C.7. Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols $>$, =, or $<$, and justify the conclusions, e.g., by using a visual model.

    5.NF. Grade 5 - Number and Operations---Fractions

      5.NF.B. Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

        5.NF.B.3. Interpret a fraction as division of the numerator by the denominator $(a/b = a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3/4$ as the result of dividing $3$ by $4$, noting that $3/4$ multiplied by $4$ equals $3$, and that when $3$ wholes are shared equally among $4$ people each person has a share of size $3/4$. If $9$ people want to share a $50$-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?

        5.NF.B.7. Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between multiplication and division. But division of a fraction by a fraction is not a requirement at this grade.

          5.NF.B.7.a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1/3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1/3) \div 4 = 1/12~$ because $(1/12) \times 4 = 1/3$.

          5.NF.B.7.b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div (1/5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div (1/5) = 20~$ because $20 \times (1/5) = 4$.

          5.NF.B.7.c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?